Integer Cech cohomology of icosahedral projection tilings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Canonical Projection Tilings

We define the cohomology of a tiling as the cocycle cohomology of its associated groupoid and consider this cohomology for the class of tilings which are obtained from a higher dimensional lattice by the canonical projection method in Schlottmann’s formulation. We prove the cohomology to be equivalent to a certain cohomology of the lattice. We discuss one of its qualitative features, namely tha...

متن کامل

Cohomology groups for projection tilings of codimension 2

The gap-labelling group, which provides the set of possible values of the integrated density of states on gaps in the spectrum of a Hamiltonian describing particles in a tiling, is frequently related to the cohomology of the tiling. We present explicit results for the cohomology of many well-known tilings obtained from the cut and projection method with codimension 2, including the (generalized...

متن کامل

Quasiperiodic Tilings: A Generalized Grid–Projection Method

We generalize the grid–projection method for the construction of quasiperiodic tilings. A rather general fundamental domain of the associated higher dimensional lattice is used for the construction of the acceptance region. The arbitrariness of the fundamental domain allows for a choice which obeys all the symmetries of the lattice, which is important for the construction of tilings with a give...

متن کامل

The integer cohomology of toric Weyl arrangements

A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we prove that if T W̃ is the toric arrangement defined by the cocharacters lattice of a Weyl group W̃ , then the integer cohomology of its complement is torsion free.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Kristallographie

سال: 2008

ISSN: 0044-2968

DOI: 10.1524/zkri.2008.1070